Summary: We study k-spine, h-bend planar drawings in which each vertex of a planar graph G lies on one of $k \geq 1$ horizontal lines and each edge of G is drawn as a polyline containing at most $h \geq 0$ bends. A graph with a k-spine, h-bend planar drawing is said to be k-spine, h-bend planar. We mainly focus on k-spine, 1-bend planar drawings, showing that for each $k \geq 2$, there exists a planar graph that is not k-spine, 1-bend planar, and furthermore, that it is \mathcal{NP}-hard to test k-spine, 1-bend planarity. Given this complexity result, we further narrow our focus onto 2-spine, 1-bend planar drawings. We characterize 2-spine, 1-bend planarity using a new generalization of Hamiltonian graphs that we call Hamiltonian-with-handles graphs. We observe that our characterization naturally extends the connection between 2-page book embeddings and Hamiltonicity. Finally, we use our characterization to show that 2-outerplanar graphs are 2-spine, 1-bend planar.

MSC: 68R10 Graph theory (including graph drawing) in computer science

Keywords:
graph drawing; graph theory; spine drawing; planarity; Hamiltonicity

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.