Akbari, Saieed; Mirrokni, Vahab S.; Sadjad, Bashir S.
A relation between choosability and uniquely list colorability. (English) Zbl 1100.05032

A list assignment L of a graph G is a function that assigns a set of colors to each vertex of G. Graph G is (uniquely) L-colorable if there is at least (exactly) one function that assigns to each vertex v of G a color from $L(v)$ such that any two adjacent vertices are assigned distinct colors. The definitions of an edge-list assignment and a uniquely L-edge-colorable graph are analogous.

The main result of this paper says that if G is a uniquely L-colorable graph with n vertices and m edges such that the sum of $|L(v)|$ over all vertices v of G equals $n + m$, then G is also L'-colorable for any list assignment L' satisfying $|L'(v)| = |L(v)|$ for each vertex v of G.

The proof is based on an algebraic technique developed by N. Alon and M. Tarsi [Combinatorica 12, No. 2, 125–134 (1992; Zbl 0756.05049)]. As a corollary, it is shown that if a connected non-regular multigraph with an edge-list assignment L satisfies $L(\{u, v\}) = \max\{d(u), d(v)\}$ for each edge $\{u, v\}$, then it is not uniquely L-edge-colorable. The authors conjecture that this result holds also for any regular graph G of degree at least two and verify it in the case that G is bipartite.

Reviewer: Tomáš Dvořák (Praha)

MSC:
05C15 Coloring of graphs and hypergraphs

Keywords:
unique list coloring

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.