Johansson, Kurt

Determinantal processes with number variance saturation. (English) Zbl 1112.82036

Summary: Consider Dyson’s Hermitian Brownian motion model after a finite time S, where the process is started at N equidistant points on the real line. These N points after time S form a determinantal process and has a limit as $N \to \infty$. This limiting determinantal process has the interesting feature that it shows number variance saturation. The variance of the number of particles in an interval converges to a limiting value as the length of the interval goes to infinity. Number variance saturation is also seen for example in the zeros of the Riemann ζ-function. The process can also be constructed using non-intersecting paths and we consider several variants of this construction. One construction leads to a model which shows a transition from a non-universal behaviour with number variance saturation to a universal sine-kernel behaviour as we go up the line.

MSC:
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60J65 Brownian motion
11Z05 Miscellaneous applications of number theory
11M26 Nonreal zeros of $\zeta(s)$ and $L(s, \chi)$; Riemann and other hypotheses

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.