Grau, Miquel; Díaz-Barrero, José Luis

An improvement of the Euler-Chebyshev iterative method. (English) Zbl 1113.65048

The computation of a simple root of a sufficiently smooth scalar function \(f \) is discussed. The Newton method and the Euler-Chebyshev method are briefly presented. A method based on the Euler-Chebyshev method using a linear combination of function values of \(f \) with a convergence order of 5 is constructed. For the practical test of 13 functions, a Maple-algorithm with iteration depending arithmetic is used.

Reviewer: René Lamour (Berlin)

MSC:
65H05 Numerical computation of solutions to single equations
65Y20 Complexity and performance of numerical algorithms

Keywords:
Euler-Chebyshev’s formula; nonlinear equation; iterative methods; order of convergence; computational efficiency; numerical examples; Newton method; Maple algorithm

Software:
Maple

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.