Rimas, Jonas
On computing of arbitrary positive integer powers for tridiagonal matrices with elements $-1, 0, 0, \ldots, 0, 1$ in principal and $1, 1, 1, \ldots, 1$ in neighbouring diagonals. II. (English)

Summary: This paper is an extension of [ibid. 188, No. 1, 634–637 (2007; reviewed above)], in which the general expression of the lth power $(l \in \mathbb{N})$ for one type of tridiagonal matrices of arbitrary order $n (n \in \mathbb{N}, n \geq 2)$ is given. In this new paper we present the complete derivation of this general expression. Expressions of eigenvectors of the matrix and of the transforming matrix and its inverse are given, too.

MSC:
65F30 Other matrix algorithms (MSC2010)
65F50 Computational methods for sparse matrices
15A21 Canonical forms, reductions, classification

Keywords:
tridiagonal matrices; eigenvalues; eigenvectors; Chebyshev polynomials

Full Text: DOI

References:
[3] Rimas, J., On computing of arbitrary positive integer powers for tridiagonal matrices with elements $-1,0,0,\ldots,0,1$ in principal and $1,1,1,\ldots,1$ in neighbouring diagonals - I, Applied mathematics and computation, (2006)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.