Udrişte, Constantin; Rodica Nicola, Ileana

Jacobi stability for geometric dynamics. (English) Zbl 1130.37014

Summary: Section 1 explains the origin of Jacobi stability. Section 2 introduces the Kosambi-Cartan-Chern theory for second-order differential systems of \(n \) equations with \(n \) unknown functions underlying the geometric roots. Section 3 introduces the fifth differential invariants associated to geometric dynamics and analyzes the Jacobi stability of geometric dynamics. Section 4 gives the basic ideas of the stability analysis of the linearized geometric dynamics of a given flow and shows that this Lyapunov stability is different from the Jacobi stability.

MSC:

37C75 Stability theory for smooth dynamical systems
37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
53C22 Geodesics in global differential geometry
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)

Keywords:
KCC theory; geodesics; deviation; curvature tensor; differential invariants; second-order differential equations

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.