Wang, Tongke

He gives three kinds of alternating direction methods, the first two are similar to Douglas schemes [Zbl 0239.65088] and [Zbl 1012.65095] in the finite element method and the finite difference method, the third is an extension of the locally one-dimensional finite difference scheme [Zbl 1012.65095] with second order accuracy. He obtains optimal error estimates in L_2 or H^1 semi-norms for these schemes and illustrates that in two numerical examples.

Reviewer: Dinh Nho Hao (Hanoi)

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

35K05 Heat equation

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Keywords:
two dimensional parabolic partial differential equation; alternating direction method; finite volume element method; error estimate; finite element method; finite difference method; error estimates; numerical examples

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.