Boyd, John P.

Summary: When two or more branches of a function merge, the Chebyshev series of $u(\lambda)$ will converge very poorly with coefficients a_n of $T_n(\lambda)$ falling as $O(1/n^\alpha)$ for some small positive exponent α. However, as shown in [J.P. Boyd, Appl. Math. Comput. 143, No. 2–3, 189–200 (2003; Zbl 1025.65042)], it is possible to obtain approximations that converge exponentially fast in n. If the roots that merge are denoted as $u_1(\lambda)$ and $u_2(\lambda)$, then both branches can be written without approximation as the roots of $(u - u_1(\lambda))(u - u_2(\lambda)) = u^2 + \beta(\lambda)u + \gamma(\lambda)$. By expanding the nonsingular coefficients of the quadratic, $\beta(\lambda)$ and $\gamma(\lambda)$, as Chebyshev series and then applying the usual roots-of-a-quadratic formula, we can approximate both branches simultaneously with error that decreases proportional to $\exp(-\sigma N)$ for some constant $\sigma > 0$ where N is the truncation of the Chebyshev series. This is dubbed the “Chebyshev-Shafer” or “Chebyshev-Hermite-Padé” method because it substitutes Chebyshev series for power series in the generalized Padé approximants known variously as “Shafer” or “Hermite-Padé” approximants. Here we extend these ideas. First, we explore square roots with branches that are both real-valued and complex-valued in the domain of interest, illustrated by meteorological baroclinic instability. Second, we illustrate triply branched functions via roots of the Kepler equation, $f(u; \lambda, \epsilon) \equiv u - \epsilon \sin(u) - \lambda = 0$. Only one of the merging roots is real-valued and the root depends on two parameters (λ, ϵ) rather than one. Nonetheless, the Chebyshev-Hermite-Padé scheme is successful over the whole two-dimensional parameter plane. We also discuss how to cope with poles and logarithmic singularities that arise in our examples at the extremes of the expansion domain.

MSC: 65D15 Algorithms for approximation of functions

Keywords: Chebyshev; Hermite-Padé approximant; Kepler equation

Software: VECTOR_PADE

Full Text: DOI

References:

[14] Colwell, P., Solving kepler’s equation over three centuries, (1993), William-Bell Richmond, Virginia · Zbl 0821.70001

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.