Conrey, J. B.; Farmer, David W.; Odgers, B. E.; Snaith, N. C.

A converse theorem for $\Gamma_0(13)$. (English) [Zbl 1160.11024]

This article is a continuation of [Int. Math. Res. Not. 1995, No. 9, 445–463 (1995; Zbl 0849.11042)]. In the spirit of Weil’s converse theorem, the authors prove that a Dirichlet series $L(s)$ with a degree two functional equation

$$
\left(\frac{\sqrt{13}}{2\pi}\right)^s \Gamma(s)L(s) = \left(\frac{\sqrt{13}}{2\pi}\right)^{1-s} \Gamma(1-s)L(1-s)
$$

that is entire and bounded in vertical strips, is the Mellin transform of a cusp form f of level 13, provided $L(s)$ has suitable Euler factors at 2 and 3.

The main point here is that although $\Gamma_0(13)$ is generated by 4 elements, no character twist of $L(s)$ is required. The proof uses some computations in the group ring $C[\text{GL}_2^+(R)]$ and a short, but tricky density argument.

Reviewer: Valentin Blomer (Göttingen)

MSC:

11F66 Langlands L-functions; one variable Dirichlet series and functional equations
11F11 Holomorphic modular forms of integral weight

Keywords:

converse theorem; functional equation; Euler product

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.