Rosenberg, Harold
Remarks on surfaces of large mean curvature. (English) Zbl 1163.53039

An orientable homogeneously regular 3-manifold N means that there is some positive constant R so that the geodesic balls of N of radius R, centered at any point of N are embedded, and in these balls, the sectional curvatures are bounded by a constant independent of the point of N where the balls are centered. By using some results from his paper [Bull. Aust. Math. Soc. 74, No. 2, 227–238 (2006; Zbl 1104.53057)], the author proves the following result:

Let $c > 0$ and H be constants satisfying

$$3H^2 + S(x) \geq c,$$

where S is the scalar curvature of N. Then a complete embedded H-surface M in N, of bounded curvature, is properly embedded.

Reviewer: Constantin Călin (Iaşi)

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

Keywords:

geodesic balls; sectional curvatures; homogeneously regular 3-manifolds

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.