Alon, Noga; Lubetzky, Eyal
Privileged users in zero-error transmission over a noisy channel. (English) Zbl 1164.05033 \newline Combinatorica 27, No. 6, 737-743 (2007).

Summary: The k-th power of a graph G is the graph whose vertex set is $V(G)^k$, where two distinct k-tuples are adjacent iff they are equal or adjacent in G in each coordinate. The Shannon capacity of G, $c(G)$, is $\lim_{k \to \infty} \alpha(G^k)/k$, where $\alpha(G)$ denotes the independence number of G. When G is the characteristic graph of a channel C, $c(G)$ measures the effective alphabet size of C in a zero-error protocol. A sum of channels, $C = \sum_i C_i$, describes a setting when there are $t \geq 2$ senders, each with his own channel C_i, and each letter in a word can be selected from any of the channels. This corresponds to a disjoint union of the characteristic graphs, $G = \sum_i G_i$. It is well known that $c(G) \geq \sum_i c(G_i)$, and in N. Alon [Combinatorica 18, 301-310 (1998; Zbl 0921.05039)] it is shown that in fact $c(G)$ can be larger than any fixed power of the above sum.

We extend the ideas of [N. Alon, “Shannon capacity of a union,” Combinatorica 18, No. 3, 301–310 (1998; Zbl 0921.05039)] and show that for every F, a family of subsets of $[t]$, it is possible to assign a channel C_i to each sender $i \in [t]$, such that the capacity of a group of senders $X \subseteq [t]$ is high iff X contains some $F \in F$. This corresponds to a case where only privileged subsets of senders are allowed to transmit in a high rate. For instance, as an analogue to secret sharing, it is possible to ensure that whenever at least k senders combine their channels, they obtain a high capacity, however every group of $k-1$ senders has a low capacity (and yet is not totally denied of service). In the process, we obtain an explicit Ramsey construction of an edge-coloring of the complete graph on n vertices by t colors, where every induced subgraph on $\exp(\Omega(\log n \log \log n))$ vertices contains all t colors.

MSC:
- 05C35 Extremal problems in graph theory
- 05C55 Generalized Ramsey theory
- 94A24 Coding theorems (Shannon theory)

Keywords:
noisy channel; zero-error transmission; Shannon capacity; disjoint union of characteristic graphs; privileged subsets of senders; secret sharing; Ramsey construction

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.