Xiao, Peng; Xu, Yinfeng; Su, Bing
Finding an anti-risk path between two nodes in undirected graphs. (English) Zbl 1180.90352

Summary: Given a weighted graph $G = (V, E)$ with a source s and a destination t, a traveler has to go from s to t. However, some of the edges may be blocked at certain times, and the traveler only observes that upon reaching an adjacent site of the blocked edge. Let $\mathcal{P} = \{P_G(s, t)\}$ be the set of all paths from s to t. The risk of a path is defined as the longest travel under the assumption that any edge of the path may be blocked. The paper will propose the Anti-risk Path Problem of finding a path $P_G(s, t)$ in \mathcal{P} such that it has minimum risk. We will show that this problem can be solved in $O(mn + n^2 \log n)$ time suppose that at most one edge may be blocked, where n and m denote the number of vertices and edges in G, respectively.

MSC: 90C35 Programming involving graphs or networks

Keywords: shortest path; shortest path tree; most vital real time edge; anti-risk path

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.