Rezazadegan, Reza
Seidel-Smith cohomology for tangles. (English) [Zbl 1187.53086]

In [Duke Math. J. 134, No. 3, 453–514 (2006; Zbl 1108.57011)], P. Seidel and I. Smith defined a singly graded link cohomology based on symplectic geometry which they called “symplectic Khovanov homology”. They conjectured that this invariant equaled Khovanov homology after the collapse of the bigrading. They defined a family \(\{Y_n\}_{n \in \mathbb{N}} \) of symplectic manifolds and to each braid \(\beta \in Br_{2m} \) they assigned a symplectomorphism \(h_\beta \) of \(Y_m \). The Seidel-Smith invariant of a link \(K \) is the Floer cohomology of \(L \) and \(h_\beta(L) \), where \(L \) is a specific Lagrangian submanifold of \(Y_m \) and \(\beta \) is any braid representation of \(K \).

In the paper under review the author constructs a generalization of the Seidel-Smith invariant to even tangles. To any elementary \((i,j)\)-tangle \(T \) he assigns a Lagrangian correspondence \(L_T \) between \(Y_i \) and \(Y_j \). Any \((m,n)\)-tangle \(T \) can be decomposed into a composition of elementary ones \(T = T_kT_{k-1} \cdots T_1 \). Moreover let \(\Phi(T) = (L_{T_k}, L_{T_{k-1}}, \ldots, L_{T_1}) \) denotes generalized Lagrangian correspondence between \(Y_m \) and \(Y_n \). Then it is proved, that up to isomorphism of generalized correspondence, \(\Phi(T) \) is independent of the decomposition of \(T \) into elementary tangles. In this way the author obtains two invariants for each \((m,n)\)-tangle \(T \). The first one is a functor \(\Phi^# \) from the generalized Fukaya category of \(Y_m \) to that of \(Y_n \). The second one is a graded abelian group, denoted \(Kh_{symp}(T) \), which is, roughly, the Floer cohomology of \(\Phi(T) \). The second main result of the paper says that \(Kh_{symp}(T) \) is well-defined and is independent of the decomposition of \(T \) into elementary tangles. The paper contains many references/accordances to Khovanov homology.

Reviewer: Andrzej Szczepański (Gdańsk)

MSC:
53D40 Symplectic aspects of Floer homology and cohomology
57M27 Invariants of knots and 3-manifolds (MSC2010)
57R58 Floer homology
20F36 Braid groups; Artin groups
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14D06 Fibrations, degenerations in algebraic geometry

Keywords:
tangles; link invariant; Khovanov homology; Lagrangian; Floer homology

Full Text: DOI arXiv

References:

© 2022 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.