Zhang, Guo-Bao; Li, Wan-Tong; Sun, Yu-Juan

Asymptotic behavior for nonlocal dispersal equations. (English) [Zbl 1191.35065]

Summary: This paper is concerned with the existence and asymptotic behavior of solutions of a nonlocal dispersal equation. By means of super-subsolution method and monotone iteration, we first study the existence and asymptotic behavior of solutions for a general nonlocal dispersal equation. Then, we apply these results to our equation and show that the nonnegative solution is unique, and the behavior of this solution depends on parameter λ in equation. For $\lambda \leq \lambda_1(\Omega)$, the solution decays to zero as $t \to \infty$; while for $\lambda > \lambda_1(\Omega)$, the solution converges to the unique positive stationary solution as $t \to \infty$. In addition, we show that the solution blows up under some conditions.

MSC:
35B40 Asymptotic behavior of solutions to PDEs
92D25 Population dynamics (general)
35K20 Initial-boundary value problems for second-order parabolic equations
35B44 Blow-up in context of PDEs
35R09 Integro-partial differential equations

Keywords: refuge place; principal eigenvalue; stationary solution; super-subsolution; monotone iteration; nonnegative solution

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.