Driscoll, Tobin A.
Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations. (English) Zbl 1195.65225

Summary: Automatic Chebyshev spectral collocation methods for Fredholm and Volterra integral and integro-differential equations have been implemented as part of the chebfun software system. This system enables a symbolic syntax to be applied to numerical objects in order to pose and solve problems without explicit references to discretization. The same objects can be used in matrix-free iterative methods in linear algebra, in order to avoid very large dense matrices or allow application to problems with nonsmooth coefficients. As a further application of the ability to implement operator equations, a method of L. Greengard [SIAM J. Numer. Anal. 28, No. 4, 1071–1080 (1991; Zbl 0731.65064)] for the recasting of differential equations as integral equations is generalized to \(m \)th order boundary value and generalized eigenvalue problems. In the integral form, large condition numbers associated with differentiation matrices in high-order problems are avoided. The ability to implement the recasting process generally follows from implementation of the operator expressions in chebfun. The integral method also can be extended to first-order systems, although chebfun syntax does not currently allow easy implementation in this case.

MSC: 65R20 Numerical methods for integral equations

Keywords: chebfun; spectral collocation; integral equation; integro-differential equation; iterative method

Software: Chebfun; chebop; Matlab; ARPACK

Full Text: DOI

References:

[22] Stewart, G.W., Afternotes goes to graduate school, (1998), Society for Industrial and Applied Mathematics Philadelphia · Zbl 0898.65001

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.