Rémy, Bertrand; Thuillier, Amaury; Werner, Annette
Bruhat-Tits theory from Berkovich’s point of view. I: Realizations and compactifications of buildings. (English) [Zbl 1198.51006]

In this beautifully written article, the authors investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean local fields.

For a \(k \)-isotropic semisimple algebraic group \(G \) defined over a non-Archimedean valued field \(k \) and for the corresponding Euclidean building \(B(G, k) \) the authors prove that, if \(k \) is complete with respect to its valuation and if \(G \) is almost \(k \)-simple, then for any conjugacy class of proper parabolic \(k \)-subgroups, of type \(t \), there exists a continuous \(G(k) \)-equivariant map \(\theta_t : B(G, K) \rightarrow \text{Par}_t(G)^{\text{an}} \) which is a homeomorphism onto its image; the closure of this image is called the Berkovich compactification of type \(t \) of the given Bruhat-Tits building. Cf. [V. G. Berkovich, Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, 33. Providence, RI: American Mathematical Society (AMS). (1990; Zbl 0715.14013)] for the notion of a Berkovich \(k \)-analytic space associated to a \(k \)-variety.

The map \(\theta_t \) in fact exists whenever the non-Archimedean valued field \(k \) is such that the Bruhat-Tits building \(B(G, k) \) exists functorially [cf. G. Rousseau, Publ. Math. D’Orsay 77-68, 207 p. (1977; Zbl 0412.22006)].

The paper heavily relies on an intimate knowledge of the theory of algebraic group schemes, and is a very welcome example of how to efficiently work with functoriality properties without losing oneself in abstract category theory.

Reviewer: Ralf Gramlich (Darmstadt)

MSC:

51E24 Buildings and the geometry of diagrams
20E42 Groups with a \(BN \)-pair; buildings
14L15 Group schemes

Keywords:

Bruhat-Tits building; algebraic group scheme; non-archimedean local field; compactification; Berkovich analytic space

Full Text: DOI Link