Minors in random regular graphs. (English) Zbl 1201.05086

Summary: We show that there is a constant c so that for fixed $r \geq 3$ a.a.s. an r-regular graph on n vertices contains a complete graph on $c\sqrt{n}$ vertices as a minor. This confirms a conjecture of K. Markström [“Complete minors in cubic graphs with few short cycles and random cubic graphs,” Ars Comb. 70, 289–295 (2004; Zbl 1092.05063)]. Since any minor of an r-regular graph on n vertices has at most $rn^2/2$ edges, our bound is clearly best possible up to the value of the constant c. As a corollary, we also obtain the likely order of magnitude of the largest complete minor in a random graph $G_{n,p}$ during the phase transition (i.e., when $pn \to 1$).

MSC: 05C83 Graph minors 05C80 Random graphs (graph-theoretic aspects)

Keywords: Hadwiger number; random regular graphs; graph minors

Full Text: DOI

References:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.