Borodin, O. V.; Glebov, A. N.; Raspaud, A.
Planar graphs without triangles adjacent to cycles of length from 4 to 7 are 3-colorable.
(English) [Zbl 1203.05048]

Summary: It is known that planar graphs without cycles of length from 4 to 7 are 3-colorable [O. V. Borodin, A. N. Glebov, A. Raspaud, and M. R. Salavatipour, “Planar graphs without cycles of length from 4 to 7 are 3-colorable,” J. Comb. Theory, Ser. B 93, No. 2, 303–311 (2005; Zbl 1056.05052)] and that planar graphs in which no triangles have common edges with cycles of length from 4 to 9 are 3-colorable [O. V. Borodin, A. N. Glebov, T. R. Jensen, and A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from 3 to 9 are 3-colorable,” Sib. Elektron. Mat. Izv. 3, 428–440, electronic only (2006; Zbl 1119.05037)]. We give a common extension of these results by proving that every planar graph in which no triangles have common edges with \(k \)-cycles, where \(k \in \{4, 5, 7\} \) (or, which is equivalent, with cycles of length 3, 5 and 7), is 3-colorable.

MSC:
05C15 Coloring of graphs and hypergraphs

Keywords:
graph; planar graph; 3-coloring

Full Text: DOI

References:
[9] O. V. Borodin, A. N. Glebov, Planar graphs without 5-cycles and with minimal distance between triangles at least 2 are 3-colourable, J. Graph Theory (in press).

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.