A Legendre Petrov-Galerkin method for fourth-order differential equations.

Summary: We present a Legendre Petrov-Galerkin method for one-dimensional linear fourth-order differential equations. A Legendre Petrov-Galerkin and Chebyshev collocation method is developed for the nonlinear Kuramoto-Sivashinsky equation. Numerical results are presented to demonstrate the efficiency of the proposed schemes, and optimal rates of convergence in the L^2-norm are rigorously derived.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Keywords:

Legendre Petrov-Galerkin method; fourth-order differential equations; Kuramoto-Sivashinsky equation; optimal error estimates

Full Text: DOI

References:

[22] Li, H.Y., Super spectral viscosity methods for nonlinear conservation laws, ()

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.