Keevash, Peter; Sudakov, Benny

Triangle packings and 1-factors in oriented graphs. (English) Zbl 1208.05038

Summary: An oriented graph is a directed graph which can be obtained from a simple undirected graph by orienting its edges. In this paper we show that any oriented graph G on n vertices with minimum indegree and outdegree at least $(1/2 - o(1))n$ contains a packing of cyclic triangles covering all but at most 3 vertices. This almost answers a question of Cuckler and Yuster and is best possible, since for $n \equiv 3 \mod 18$ there is a tournament with no perfect triangle packing and with all indegrees and outdegrees $(n - 1)/2$ or $(n - 1)/2 \pm 1$. Under the same hypotheses, we also show that one can embed any prescribed almost 1-factor, i.e. for any sequence n_1, \ldots, n_t with $\sum_{i=1}^t n_i \leq n - O(1)$ we can find a vertex-disjoint collection of directed cycles with lengths n_1, \ldots, n_t. In addition, under quite general conditions on the n_i we can remove the $O(1)$ additive error and find a prescribed 1-factor.

MSC:
05C20 Directed graphs (digraphs), tournaments
05D05 Extremal set theory

Keywords:
directed graphs; packing; cycles

Full Text: DOI arXiv

References:
[18] P. Keevash, A hypergraph blowup lemma, submitted for publication

[26] Komlós, J.; Simonovits, M., Szemerédi’s regularity lemma and its applications in graph theory, (), 295-352 - Zbl 0951.05021

[27] D. Kühn, D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica, in press

[37] Thomassen, C., Long cycles in digraphs with constraints on the degrees, (), 211-228

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.