Summary: A graph G is said to be well-covered if every maximal independent set of vertices has the same cardinality. A planar (simple) graph in which each face is a triangle is called a triangulation. It was proved in an earlier paper [A. Finbow, B. Hartnell, R. Nowakowski, and M. Plummer, “On well-covered triangulations. I,” Discrete Appl. Math. 132, No. 1-3, 97–108 (2003; Zbl 1029.05114)] that there are no 5-connected planar well-covered triangulations, and in [A. Finbow, B. Hartnell, R. Nowakowski, and M. Plummer, “On well-covered triangulations. II,” Discrete Appl. Math. 157, No. 13, 2799–2817 (2009; Zbl 1209.05166)] that there are exactly four 4-connected well-covered triangulations containing two adjacent vertices of degree 4. It is the aim of the present paper to complete the characterization of 4-connected well-covered triangulations by showing that each such graph contains two adjacent vertices of degree 4.

MSC:
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)

Keywords:
well-covered graph; maximal independent set; 4-connected planar triangulation

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.