Matsutani, Shigeki

Euler’s elastica and beyond. (English) [Zbl 1209.37086]

In 1691, James (Jacob) Bernoulli proposed the elastica problem, which was essentially solved by Euler in 1744: What shape can be obtained when an elastica, an ideal infinitesimally thin elastic rod, is bent without stretching on a plane?

The author reviews the studies and classification of Bernoulli and Euler from an historic point of view and indicates connections with elliptic curves, lemniscate, nonlinear integrable differential equations, etc.

The second part of the paper summarizes the author’s work over two decades on the quantized elastica problem, i.e., statistical mechanics of elastica in a heat bath, which serves as a model of the DNA. In this context the modified Korteweg–de Vries hierarchy, loop space, and the submanifold Dirac operator appear.

Reviewer: Johanna Michor (Wien)

MSC:

- **37K20** Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
- **82D60** Statistical mechanics of polymers
- **37K10** Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
- **35Q53** KdV equations (Korteweg-de Vries equations)
- **74G65** Energy minimization in equilibrium problems in solid mechanics
- **58E50** Applications of variational problems in infinite-dimensional spaces to the sciences
- **74K10** Rods (beams, columns, shafts, arches, rings, etc.)

Keywords:

- Euler’s elastica; lemniscate; quantized elastica; mKdV hierarchy

© 2022 FIZ Karlsruhe GmbH