The paper shows that when $\omega \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.

The paper shows that when $\omega(F) \neq 0$, $HF^+(Y; \Lambda) \cong \Lambda$, in analogy to a similar result proven for higher genus fibers $F$ in P. Ozsváth and Z. Szabó [Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)] when $Y$ is fibered over $S^1$ with torus fiber $F$. Here, $\Lambda_\omega$ is the universal Novikov ring $\Lambda$ with a $\mathbb{Z}[H^1(Y; \mathbb{Z})]$-action defined from $\omega$.


This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.