Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.

Summary: This paper analyzes a method for solving the third- and fifth-order differential equations with constant coefficients using a Jacobi dual-Petrov-Galerkin method, which is more reasonable than the standard Galerkin one. The spatial approximation is based on Jacobi polynomials $P_{\alpha,\beta}^n$ with $\alpha, \beta \in (-1, \infty)$ and n is the polynomial degree. By choosing appropriate base functions, the resulting system is sparse and the method can be implemented efficiently. A Jacobi-Jacobi dual-Petrov-Galerkin method for the differential equations with variable coefficients is developed. This method is based on the Petrov-Galerkin variational form of one Jacobi polynomial class, but the variable coefficients and the right-hand terms are treated by using the Gauss-Lobatto quadrature form of another Jacobi class. Numerical results illustrate the theory and constitute a convincing argument for the feasibility of the proposed numerical methods.

MSC:
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Keywords:
Petrov-Galerkin method; Jacobi collocation method; Jacobi polynomials; Jacobi-Gauss-Lobatto quadrature; fast Fourier transform; Jacobi-Jacobi Galerkin method

Full Text: DOI

References:

Ma, H.; Sun, W., Properties of collocation third-derivative operators, J. comput. phys., 105, 182-185, (1993) · Zbl 0767.65074

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.