Summary: Fix strictly increasing right continuous functions with left limits and periodic increments, \(W_i : \mathbb{R} \to \mathbb{R}, i = 1, \ldots, d \), and let \(W(x) = \sum_{i=1}^{d} W_i(x_i) \) for \(x \in \mathbb{R}^d \). We construct the \(W \)-Sobolev spaces, which consist of functions \(f \) having weak generalized gradients \(\nabla_W f = (\partial_{W_1} f, \ldots, \partial_{W_d} f) \). Several properties, that are analogous to classical results on Sobolev spaces, are obtained. Existence and uniqueness results for \(W \)-generalized elliptic equations, and uniqueness results for \(W \)-generalized parabolic equations are also established. Finally, an application of this theory to stochastic homogenization is presented.

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35J15 Second-order elliptic equations
35K10 Second-order parabolic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

Keywords:
Poincaré inequality; compact embedding; stochastic homogenization

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.