Du, Shao-Fei; Kwak, Jin Ho
Nonorientable regular embeddings of graphs of order p^2. (English) Zbl 1222.05189

Summary: A map is called regular if its automorphism group acts regularly on the set of all flags (incident vertex-edge-face triples). An orientable map is called orientably regular if the group of all orientation-preserving automorphisms is regular on the set of all arcs (incident vertex-edge pairs). If an orientably regular map admits also orientation-reversing automorphisms, then it is regular, and is called reflexible.

A regular embedding and orientably regular embedding of a graph G are, respectively, 2-cell embeddings of G as a regular map and orientably regular map on some closed surface. In [S. F. Du, J. H. Kwak, and R. Nedela, “A classification of regular embeddings of graphs of order a product of two primes,” J. Algebr. Comb. 19, No.2, 123–141 (2004; Zbl 1042.05027), the orientably regular embeddings of graphs of order pq for two primes p and q (may be equal to q) have been classified, where all the reflexible maps can be easily read from the classification theorem. S. F. Du and F. R. Wang (“Nonorientable regular embeddings of graphs of order a product of two distinct primes,” (to appear) classified the nonorientable regular embeddings of these graphs for $p \neq q$. In this paper, we shall classify the nonorientable regular embeddings of graphs of order p^2 where p is a prime so that a complete classification of regular embeddings of graphs of order pq for two primes p and q is obtained. All graphs in this paper are connected and simple.

MSC:
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)

Keywords:
vertex-transitive graph; regular map; permutation group

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.