A fast algorithm for equitable coloring. (English) Zbl 1224.05176

An equitable \(k \)-colouring of a graph is a proper vertex colouring with \(k \) colors, in which the sizes of any two colour classes differ by at most one. It was conjectured by P. Erdős and proved by A. Hajnal and E. Szemerédi [Combinat. Theory Appl., Colloquia Math. Soc. János Bolyai 4, 601–623 (1970; Zbl 0217.02601)] that every graph with maximum degree at most \(r \) admits an equitable \((r + 1)\)-colouring. The authors present a less complicated and shorter proof of this celebrated Hajnal-Szemerédi theorem by using new methods and recombining old ideas. Their proof yields, moreover, a simple \(O(n^2) \) time algorithm for obtaining an equitable \((r + 1)\)-colouring, where \(n \) is the vertex number of the given graph with maximum degree at most \(r \). This algorithm is faster than those obtained previously in [H. A. Kierstead and A. V. Kostochka, Comb. Probab. Comput. 17, No. 2, 265–270 (2008; Zbl 1163.05015); M. Mydlarz and E. Szemerédi, Algorithmic Brooks’ theorem, manuscript].

H. A. Kierstead and A. V. Kostochka [J. Comb. Theory, Ser. B 98, No. 1, 226–234 (2008; Zbl 1127.05039)] improved the Hajnal-Szemerédi theorem by showing that any graph, in which the degree sum of any two adjacent vertices is at most \(2r + 1 \), has an equitable \((r + 1)\)-colouring. The authors conjecture that such a colouring can be constructed by a polynomial time algorithm.

Reviewer: Van Bang Le (Rostock)

MSC:

05C15 Coloring of graphs and hypergraphs
05C85 Graph algorithms (graph-theoretic aspects)

Keywords:
equitable vertex colouring of graphs; Hajnal-Szemerédi theorem

Full Text: DOI Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.