Savage, Carla D.; Schuster, Michael J.

Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences.
(English) | Zbl 1237.05017

Summary: For a sequence $s = (s_1, \ldots, s_n)$ of positive integers, an s-lecture hall partition is an integer sequence λ satisfying $0 \leq \lambda_1/s_1 \leq \lambda_2/s_2 \leq \cdots \leq \lambda_n/s_n$. In this work, we introduce s-lecture hall polytopes, s-inversion sequences, and relevant statistics on both families. We show that for any sequence s of positive integers:

(i) the h^*-vector of the s-lecture hall polytope is the ascent polynomial for the associated s-inversion sequences;
(ii) the ascent polynomials for s-inversion sequences generalize the Eulerian polynomials, including a q-analog that tracks a generalization of major index on s-inversion sequences; and
(iii) the generating function for the s-lecture hall partitions can be interpreted in terms of a new q-analog of the s-Eulerian polynomials, which tracks a “lecture hall” statistic on s-inversion sequences.

We show how four different statistics are related through the three s-families of partitions, polytopes, and inversion sequences. Our approach uses Ehrhart theory to relate the partition theory of lecture hall partitions to their geometry.

MSC:
05A17 Combinatorial aspects of partitions of integers

Keywords: lecture hall partitions; Eulerian polynomials; permutation statistics; Ehrhart-theory; inversion sequences; q-series identities

Full Text: DOI

References:
[12] Corteel, Sylvie; Savage, Carla D.; Sills, Andrew V., Lecture Hall sequences, q-series, and asymmetric partition identities, (), 53-68 · Zbl 1242.05011

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2023 FIZ Karlsruhe GmbH
[15] Foata, Dominique, Eulerian polynomials: from euler’s time to the present, (), 253-273 · Zbl 1322.01007
[27] Einar Steingrimsson, Permutations statistics of indexed and poset permutations, ProQuest LLC, Ann Arbor, MI, 1992, PhD thesis, Massachusetts Institute of Technology · Zbl 0790.05002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.