Let $H = (h_{ij})_{i,j=1}^N$ be an $N \times N$ Hermitian or symmetric matrix where the matrix elements $h_{ij} = \bar{h}_{ij}$, $i \leq j$, are independent random variables given by a probability measure ν_{ij} with mean zero and variance $\sigma_{ij}^2 \geq 0$. The variances satisfy the normalization condition $\sum_{i=1}^N \sigma_{ij}^2 = 1$ for any fixed j and there is a constant $c > 0$ such that $c \leq N \sigma_{ij}^2 \leq c^{-1}$. It is also assumed that probability distributions ν_{ij} have a uniform subexponential decay.

In this paper, it is proved that the Stieltjes transform of the empirical eigenvalue distribution of H is given by the Wigner semicircle law uniformly up to edges of the spectrum with an error of order $(N \eta)^{-1}$ where η is the imaginary part of the spectral parameter in the Stieltjes transform. From this strong local semicircle law three important consequences follow:

1. Rigidity of eigenvalues: If $\gamma_{j,N}$ denotes the classical location of the j-th eigenvalue under the semicircle law ordered in increasing order, then the j-th eigenvalue λ_i is close to $\gamma_{j,N}$ in the sense that for some positive constants C, c

$$\Pr(\exists j : |\lambda_i - \gamma_{j,N}| \geq (\log N)^{C \log \log N} [\min(j, N - j + 1)]^{-1/3} N^{-2/3}) \leq C \exp\left[-(\log N)^{C \log \log N}\right]$$

for N large enough.

2. The proof of F. J. Dyson’s conjecture [J. Math. Phys. 3, 1191–1198 (1962; Zbl 0111.32703)], which states that the Dyson Brownian motion reaches local equilibrium at time $t \sim N^{-1+\delta}$ for arbitrary small δ.

3. The edge universality in the sense that the probability distributions of the largest (and the smallest) eigenvalues of two generalized Wigner ensembles are equal in the large N limit provided that the second moments of the two ensembles are identical.

Reviewer: Václav Burjan (Praha)

Johansson, K., Universality for certain Hermitian Wigner matrices under weak moment conditions, preprint · Zbl 1252.60031

[41] Tao, T.; Vu, V., Random matrices: universality of local eigenvalue statistics up to the edge, preprint · Zbl 1202.15038

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.