Łuczak, Tomasz; Simonovits, Miklós; Skokan, Jozef

On the multi-colored Ramsey numbers of cycles. (English) Zbl 1242.05174

J. Graph Theory 69, No. 1-2, 169-175 (2012).

Summary: For a graph L and an integer $k \geq 2$, $R_k(L)$ denotes the smallest integer N for which for any edge-coloring of the complete graph K_N by k colors there exists a color i for which the corresponding color class contains L as a subgraph.

J. A. Bondy and P. Erdős [J. Comb. Theory, Ser. B 14, 46-54 (1973; Zbl 0248.05127)] conjectured that, for an odd cycle C_n on n vertices,

$$R_k(C_n) = 2^{k-1}(n-1) + 1 \quad \text{for } n > 3.$$

They proved the case when $k = 2$ and also provided an upper bound $R_k(C_n) \leq (k+2)!n$. Recently, this conjecture has been verified for $k = 3$ if n is large. In this note, we prove that for every integer $k \geq 4$,

$$R_k(C_n) \leq k2A_k n + o(n) \quad \text{as } n \to \infty.$$

When n is even, Y. Sun, Y. Yang, F. Xu and B. Li [Graphs Comb. 22, No. 2, 283-288 (2006; Zbl 1099.05062)] gave a construction, showing that $R_k(C_n + n) \geq (k-1)n - 2k + 4$. Here we prove that if n is even, then

$$R_k(C_n) \leq kn + o(n) \quad \text{as } n \to \infty.$$

MSC:

05C55 Generalized Ramsey theory
05C38 Paths and cycles
05C15 Coloring of graphs and hypergraphs

Keywords:

edge-coloring; color class

Full Text: DOI

References:

[9] Y. Kohayakawa M. Simonovits J. Skokan The 3-colored Ramsey number of odd cycles · Zbl 1203.05100

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.