Linear independence measure for squares of periods and quasi-periods of elliptic curves.

Let q be a rational integer satisfying either $q \geq 28035$ or $q \leq -27153$. The author proves that the four numbers

$$1, \quad 3F_2\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1 \\
\frac{1}{q}
\end{array}; \frac{1}{q}\right), \quad 3F_2\left(\begin{array}{c}
\frac{3}{2} \\
\frac{3}{2} \\
2 \\
\frac{1}{q}
\end{array}; \frac{1}{q}\right), \quad 3F_2\left(\begin{array}{c}
\frac{5}{2} \\
\frac{5}{2} \\
3 \\
\frac{1}{q}
\end{array}; \frac{1}{q}\right)$$

are linearly independent over \mathbb{Q} and provides an explicit linear independence measure.

For $\lambda \in \mathbb{R}$ with $0 < |\lambda| < 1$, denote by $\omega(\lambda)$ and $\eta(\lambda)$ the real period and the real quasi–period of the Legendre elliptic curve $y^2 = x(x-1)(x-\lambda)$, so that

$$\frac{\omega(\lambda)}{\pi} = 2F_1\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1; \lambda
\end{array}; \lambda\right) \quad \text{and} \quad \frac{\eta(\lambda)}{\pi} = 2F_1\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1; \lambda
\end{array}; \lambda\right).$$

Then for $q \in \mathbb{Z}$ with either $q \geq 112138$ or $q \leq -108606$, the four numbers

$$1, \quad \left(\frac{\omega(1/q)}{\pi}\right)^2, \quad \frac{\omega(1/q)\eta(1/q)}{\pi^2}, \quad \frac{\eta(1/q)}{\pi}$$

are linearly independent over \mathbb{Q} and again the author provides an explicit linear independence measure.

Reviewer: Michel Waldschmidt (Paris)

MSC:

11J72 Irrationality; linear independence over a field
11J82 Measures of irrationality and of transcendence
11G05 Elliptic curves over global fields
33C20 Generalized hypergeometric series, pF_q

Keywords:

Linear independence measure; elliptic curve; period; quasi-period; generalized hypergeometric function

Full Text: DOI

References:

[1] Apéry, R., Irrationalité de $\zeta(2)$ et $\zeta(3)$, Journées arithmétiques, Luminy, 1978, Astérisque, 61, 11-13, (1979) - Zbl 0401.10049

[6] Clausen, T., Über die Fälle, wenn die reihe von der form $y = 1 + \frac{\alpha}{1} \cdot \frac{\beta}{\gamma} x + \frac{\alpha \cdot \alpha + 1}{1 \cdot 2} \cdot \frac{\beta \cdot \beta + 1}{\gamma \cdot \gamma + 1} x^2 + \operatorname{etc.}$ ein quadrat von der form $z = 1 + \frac{\alpha'}{1} \cdot \frac{\beta'}{\gamma'} \cdot \frac{\delta'}{(\varepsilon')^2} x + \frac{\alpha' \cdot \alpha' + 1}{1 \cdot 2} \cdot \frac{\beta' \cdot \beta' + 1}{\gamma' \cdot \gamma' + 1} \cdot \frac{\delta' \cdot \delta' + 1}{(\varepsilon')^2} x^2 + \operatorname{etc.}$ hat, J. reine angew. math., 3, 89-91, (1828)
[12] Ramanujan, S., Modular equations and approximations to π, Quart. J., 45, 350-372, (1914) - Zbl 45.1249.01

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.