Authors’ abstract: Consider a system of particles performing branching Brownian motion with negative drift $\mu = \sqrt{2 - \varepsilon}$ and killed upon hitting zero. Initially there is one particle at $x > 0$. H. Kesten [Stochastic Processes Appl. 7, 9–47 (1978; Zbl 0383.60077)] showed that the process survives with positive probability if and only if $\varepsilon > 0$. Here we are interested in the asymptotics as $\varepsilon \to 0$ of the survival probability $Q_\mu(x)$. It is proved that if $L = \pi/\sqrt{\varepsilon}$ then for all $x \in \mathbb{R}$, $\lim_{\varepsilon \to 0} Q_\mu(L + x) = \theta(x) \in (0,1)$ exists and is a traveling wave solution of the Fisher-KPP equation. Furthermore, we obtain sharp asymptotics of the survival probability when $x < L$ and $L - x \to \infty$. The proofs rely on probabilistic methods developed by the authors in “The genealogy of branching Brownian motion with absorption”, arxiv:1001.2337 (2010)]. This completes earlier work by J. W. Harris, S. C. Harris and A. E. Kyprianou [Ann. Inst. Henri Poincaré, Probab. Stat. 42, No. 1, 125–145 (2006; Zbl 1093.60059)] and confirms predictions made by B. Derrida and D. Simon [Europhys. Lett. 78, Article ID 60006, 6 p. (2007; Zbl 1244.82071)], which were obtained using nonrigorous PDE methods.

Reviewer: Victor V. Goryainov (Volzhsky)

MSC:
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60K35 Interacting random processes; statistical mechanics type models; percolation theory

Keywords:
branching Brownian motion; survival probability; extinction probability

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.