Li, Yingshu; Wu, Yiwei; Ai, Chunyu; Beyah, Raheem

On the construction of k-connected m-dominating sets in wireless networks. (English)

Summary: Connected dominating sets (CDS) that serve as a virtual backbone are now widely used to facilitate routing in wireless networks. A k-connected m-dominating set (kmCDS) is necessary for fault tolerance and routing flexibility. In order to construct a kmCDS with the minimum size, some approximation algorithms have been proposed in literature. However, the proposed algorithms either only consider some special cases where $k = 1, 2$ or $k \leq m$, or not easy to implement, or cannot provide performance ratio. In this paper, we propose a centralized heuristic algorithm, CSAA, which is easy to implement, and two distributed algorithms, DDA and DPA, which are deterministic and probabilistic methods respectively, to construct a kmCDS for general k and m. Theoretical analysis and simulation results indicate that our algorithms are efficient and effective.

MSC:

90C27 Combinatorial optimization
90C35 Programming involving graphs or networks

Keywords: wireless networks; connected dominating sets; k-connected m-dominating sets; performance ratio; distributed algorithms; approximation algorithms

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.