Stević, Stevo
Weighted radial operator from the mixed-norm space to the \(n\)th weighted-type space on the unit ball. (English) \[Zbl 1246.32005 \] Appl. Math. Comput. 218, No. 18, 9241-9247 (2012).

Summary: The boundedness and compactness of weighted radial operators from mixed-norm spaces to \(n\)th weighted-type space on the unit ball are characterized.

MSC:
- 32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
- 47B38 Linear operators on function spaces (general)

Keywords:
- weighted radial operator; mixed-norm space; \(n\)th weighted-type space; boundedness; compactness; unit ball

Full Text: DOI

References:

7. Li, S.; Stević, S., Composition followed by differentiation between \(\mathcal{H}^\infty\) and \(\alpha\)-Bloch spaces, Houston J. math., 35, 1, 327-340, (2009) · Zbl 1166.47034
14. W. Rudin, Function Theory in the Unit Ball of \(\mathcal{H}^\infty\), Springer-Verlag, New York, 1980. · Zbl 0495.32001
15. H.J. Schwartz, Composition operators on \(\mathcal{H}^\infty\), Thesis, University of Toledo 1969.
18. Stević, S., On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. math. anal. appl.,

Stević, S., Composition operators from the Hardy space to the \textit{n}th weighted-type space on the unit disk and the half-plane, Appl. math. comput., 215, 3950-3955, (2010) · Zbl 1184.30051

Stević, S., Weighted differentiation composition operators from H^∞ and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. math. comput., 216, 3634-3641, (2010) · Zbl 1195.47023

Stević, S., On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball, Appl. math. comput., 217, 5930-5935, (2011) · Zbl 1245.47002

Yang, W.; Meng, X., Generalized composition operators from $F(p, q \text{, s})$ spaces to Bloch-type spaces, Zbl 1221.47048

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.