Square and rectangle covering with outliers. (English)

Summary: For a set of \(n \) points in the plane, we consider the axis-aligned \((p,k)\)-Box Covering problem: Find \(p \) axis-aligned, pairwise disjoint boxes that together contain exactly \(n-k \) points. Here, our boxes are either squares or rectangles, and we want to minimize the area of the largest box. For squares, we present algorithms that find the solution in \(O(n + k \log k) \) time for \(p = 1 \), and in \(O(n \log n + k^p \log^p k) \) time for \(p = 2, 3 \). For rectangles we have running times of \(O(n + k^3) \) for \(p = 1 \) and \(O(n \log n + k^{2+p} \log^{p-1} k) \) time for \(p = 2, 3 \). In all cases, our algorithms use \(O(n) \) space.

For the entire collection see [Zbl 1166.68003].

MSC:

- 68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
- 68Q25 Analysis of algorithms and problem complexity

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.