Let G be a semisimple group over an algebraically closed field. Steinberg has associated to a Coxeter element w of minimal length r a subvariety V of G isomorphic to an affine space of dimension r which meets the regular unipotent class Y in exactly one point. In this paper this is generalized to the case where w is replaced by any elliptic element in the Weyl group of minimal length d in its conjugacy class, V is replaced by a subvariety V' of G isomorphic to an affine space of dimension d, and Y is replaced by a unipotent class Y' of codimension d in such a way that the intersection of V' and Y' is finite. The proofs use quantum groups and canonical bases. The base ring is often just a commutative ring A and an affine space of dimension d is treated through the set A^d of its A-valued points. Relevant maps between affine spaces are described by polynomials with integral coefficients. Thus one gets a version over \mathbb{Z}. Some twisted cases are treated also.

Reviewer: Wilberd van der Kallen (Utrecht)

MSC:

- 20G99 Linear algebraic groups and related topics
- 20G05 Representation theory for linear algebraic groups
- 14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
- 14L30 Group actions on varieties or schemes (quotients)

Keywords:

Coxeter elements; elliptic elements; unipotent classes; cross sections; semisimple groups; affine spaces; Weyl groups

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.