Convex integrals on Sobolev spaces. (English) [Zbl 1254.49006]

Summary: Let $j_0, j_1 : \mathbb{R} \to [0, \infty)$ denote convex functions vanishing at the origin, and let Ω be a bounded domain in \mathbb{R}^3 with sufficiently smooth boundary Γ. This paper is devoted to the study of the convex functional

$$J(u) = \int_{\Omega} j_0(u)\,d\Omega + \int_{\Gamma} j_1(\gamma u)\,d\Gamma$$

on the Sobolev space $H^1(\Omega)$. We describe the convex conjugate J^* and the subdifferential ∂J. It is shown that the action of ∂J coincides pointwise a.e. in Ω with $\partial j_0(u(x))$, and a.e on Γ with $\partial j_1(u(x))$. These conclusions are nontrivial because, although they have been known for the subdifferentials of the functionals $J_0(u) = \int_{\Omega} j_0(u)\,d\Omega$ and $J_1(u) = \int_{\Gamma} j_1(\gamma u)\,d\Gamma$, the lack of any growth restrictions on j_0 and j_1 makes the sufficient domain condition for the sum of two maximal monotone operators ∂J_0 and ∂J_1 infeasible to verify directly.

The presented theorems extend the results of H. Brézis [Intégrales convexes dans les espaces de Sobolev. Proc. int. Symp. partial diff. Equ. Geometry normed lin. Spaces I. (French), Isr. J. Math. 13, 9–23, (1972; Zbl 0249.46017)] and fundamentally complement the emerging research literature addressing supercritical damping and sources in hyperbolic PDE’s. These findings rigorously confirm that a combination of supercritical interior and boundary damping feedbacks can be modeled by the subdifferential of a suitable convex functional on the state space.

MSC:

49J52 Nonsmooth analysis

Keywords:

convex integral; Sobolev space; subdifferential; convex conjugate

Full Text: Link