Sulkowska, Małgorzata

The best choice problem for upward directed graphs.

(English)

Discrete Optim. 9, No. 3, 200-204 (2012).

Summary: We consider a generalization of the best choice problem to upward directed graphs. We describe a strategy for choosing a maximal element (i.e., an element with no outgoing edges) when a selector knows in advance only the number \(n \) of vertices of the graph. We show that, as long as the number of elements dominated directly by the maximal ones is not greater than \(c_1 \sqrt{n} \) for some positive constant \(c_1 \) and the indegree of remaining vertices is bounded by a constant \(D \), the probability \(p_n \) of the right choice according to our strategy satisfies \(\lim \inf_{n \to \infty} p_n \sqrt{n} \geq \delta > 0 \), where \(\delta \) is a constant depending on \(c_1 \) and \(D \).

MSC:

90C35 Programming involving graphs or networks
60G40 Stopping times; optimal stopping problems; gambling theory

Keywords:

directed graph; secretary problem; optimal stopping problems; gambling theory

Full Text: DOI

References:

[3] Stadje, W., Efficient stopping of a random series of partially ordered points, () · Zbl 0468.60046

Cited in 5 Documents