Defez, Emilio; Tung, Michael M.; Ibáñez, Jacinto-Javier; Sastre, Jorge
Approximating and computing nonlinear matrix differential models. (English) Zbl 1255.65148

Summary: Differential matrix models are an essential ingredient of many important scientific and engineering applications. In this work, we propose a procedure to represent the solutions of first-order matrix differential equations \(Y'(x) = f(x, Y(x)) \) with approximate matrix splines. For illustration of the method, we choose one scalar example, a simple vector model, and finally a Sylvester matrix differential equation as a test.

MSC:
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65D07 Numerical computation using splines

Keywords:
higher-order matrix splines; first-order matrix differential equations

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.