Bahri, A.; Bendersky, M.; Cohen, F. R.; Gitler, S.
Cup-products for the polyhedral product functor. (English) Zbl 1258.13027

The polyhedral product functor, or generalized moment-angle complex, was introduced in a previous paper by the same authors [Adv. Math. 225, No. 3, 1634–1668 (2010; Zbl 1197.13021)]: associated to an abstract simplicial complex K with m vertices, whose simplices σ are identified with subsequences of $(1,\ldots, m)$, and a family $(X, A) = \{(X_i, A_i)\}_{i=1}^m$ of based CW pairs, they defined the space

$$Z(K,(X, A)) = \bigcup_{\sigma \in K} D(\sigma),$$

where $D(\sigma) = \prod_{i=1}^m Y_i$, and $Y_i = X_i$ if $i \in \sigma$ and $Y_i = A_i$ if $i \notin \sigma$. In the case $(X_i, A_i) = (D^2, S^1)$, the ordinary moment-angle complexes are recovered.

The main object of interest in [loc. cit.] was the stable homotopy type of $Z(K,(X, A))$; among others, the authors proved a decomposition theorem for the first suspension of this space: it is homotopy equivalent to the suspension of a wedge sum of some generalized smash moment-angle complexes determined by the full subcomplexes of K. In this paper, they use this decomposition theorem to investigate the ring structure of the cohomology of $Z(K,(X, A))$. They show that it is isomorphic to the sum of the cohomologies of the generalizes smash moment-angle complexes appearing in the wedge sum mentioned above, equipped with a natural product (called \ast-product). This is used to find some conditions under which the product of two cohomology classes is zero, and to generalize some results from [loc. cit.] for the case that the A_i are contractible.

Reviewer: Oliver Goertsches (Hamburg)

MSC:
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
14F45 Topological properties in algebraic geometry
55U10 Simplicial sets and complexes in algebraic topology

Keywords:
moment-angle complex; simplicial complex; cohomology ring; suspension; stable homotopy type; Stanley-Reisner ring

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.