Kawamura, Katsunori

R-matrices and the Yang-Baxter equation on GNS representations on \(C^\ast \)-bialgebras. (English) Zbl 1267.16033 Linear Algebra Appl. 438, No. 1, 573-583 (2013).

Let \(A \) be a \(C^\ast \)-bialgebra. If there is a dense \(\ast \)-subalgebra \(A_0 \) such that \(\Delta(A_0) \subset A_0 \otimes A_0 \), where \(\otimes \) denotes the algebraic tensor product of \(\ast \)-algebras, the author calls \(A \) an algebraic \(C^\ast \)-bialgebra. For example, every finite dimensional \(C^\ast \)-bialgebra is algebraic. For a state \(\psi \) of \(A \), let \(\mathcal{H}_\psi \) denote the corresponding GNS-representation space. Under some condition for a pair of states \(\psi \) and \(\omega \), the author constructs a unitary \(R \)-matrix

\[
R(\psi, \omega) : \mathcal{H}_\psi \otimes \mathcal{H}_\omega \to \mathcal{H}_\psi \otimes \mathcal{H}_\omega
\]

which satisfies an analogue of the quantum Yang-Baxter equation. By an example, he shows that such solutions exist for \(C^\ast \)-bialgebras \(A \) which are not quasi-cocommutative.

Reviewer: Wolfgang Rump (Stuttgart)

MSC:

16T25 Yang-Baxter equations
46L05 General theory of \(C^\ast \)-algebras
16T10 Bialgebras
46L06 Tensor products of \(C^\ast \)-algebras
46L30 States of selfadjoint operator algebras

Keywords:

\(C^\ast \)-bialgebras; \(R \)-matrices; quantum Yang-Baxter equation; states; GNS representations

Full Text: DOI arXiv