Abueida, Atif A.; Pike, David A.
Cycle extensions in BIBD block-intersection graphs. (English) Zbl 1269.05064

Summary: A cycle C in a graph G is extendable if there is some other cycle in G that contains each vertex of C plus one additional vertex. A graph is cycle extendable if every non-Hamilton cycle in the graph is extendable. A balanced incomplete block design, BIBD(v, k, λ), consists of a set V of v elements and a block set B of k-subsets of V such that each 2-subset of V occurs in exactly λ of the blocks of B. The block-intersection graph of a design $D = (V, B)$ is the graph G_D having B as its vertex set and such that two vertices of G_D are adjacent if and only if their corresponding blocks have nonempty intersection. In this paper, we prove that the block-intersection graph of any BIBD(v, k, λ) is cycle extendable. Furthermore, we present a polynomial time algorithm for constructing cycles of all possible lengths in a block-intersection graph.

MSC:
05C38 Paths and cycles
05B05 Combinatorial aspects of block designs

Keywords:
cycle extension; block design; intersection graph; polynomial time algorithm

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.