Belkhechine, Houmem; Boudabbous, Imed; Hzami, Kaouthar

The indecomposable tournaments \(T \) with \(|W_5(T)| = |T| - 2 \). (Les tournois indécomposables \(T \) tels que \(|W_5(T)| = |T| - 2 \).) (English. French summary) Zbl 1273.05084

Summary: We consider a tournament \(T = (V, A) \). For \(X \subseteq V \), the subtournament of \(T \) induced by \(X \) is \(T[X] = (X, A \cap (X \times X)) \). An interval of \(T \) is a subset \(X \) of \(V \) such that, for \(a, b \in X \) and \(x \in V \setminus X \), \((a, x) \in A\) if and only if \((b, x) \in A\). The trivial intervals of \(T \) are \(\emptyset \), \(\{x\} \) (\(x \in V \)) and \(V \). A tournament is indecomposable if all its intervals are trivial. For \(n \geq 2 \), \(W_{2n+1} \) denotes the unique indecomposable tournament defined on \(\{0, \ldots, 2n\} \) such that \(W_{2n+1}[\{0, \ldots, 2n-1\}] \) is the usual total order. Given an indecomposable tournament \(T \), \(W_5(T) \) denotes the set of \(v \in V \) such that there is \(W \subseteq V \) satisfying \(v \in W \) and \(T[W] \) is isomorphic to \(W_5 \). B. Latka [J. Graph Theory 42, No. 3, 165–192 (2003; Zbl 1016.05036)] characterized the indecomposable tournaments \(T \) such that \(W_5(T) = \emptyset \). The authors [C. R., Math., Acad. Sci. Paris 350, No. 7–8, 333–337 (2012; Zbl 1242.05106)] proved that if \(W_5(T) \neq \emptyset \), then \(|W_5(T)| \geq |V| - 2 \).

In this note, we characterize the indecomposable tournaments \(T \) such that \(|W_5(T)| = |V| - 2 \).

MSC:

05C20 Directed graphs (digraphs), tournaments

Keywords: indecomposable tournaments

Full Text: DOI arXiv Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.