Let \(p(n) \) denote the number of unrestricted partitions of the nonnegative integer \(n \). M. V. Subbarao [Am. Math. Mon. 73, 851–854 (1966; Zbl 0173.01803)] conjectured that, for any arithmetic progression \(r \pmod{t} \), there are infinitely many integers \(M \equiv r \pmod{t} \) for which \(p(M) \) is odd, and there are infinitely many integers \(N \equiv r \pmod{t} \) for which \(p(N) \) is even. Using modular forms, K. Ono [J. Reine Angew. Math. 472, 1–15 (1996; Zbl 0835.11038)] proved the even case of Subbarao’s conjecture but in the odd case he needed the existence of one such \(M \).

In the paper under review the author proves the odd part of the conjecture. He also shows that, for every arithmetic progression \(r \pmod{t} \), there are infinitely many integers \(M \equiv r \pmod{t} \) such that \(p(M) \not\equiv 0 \pmod{3} \), which settles an open problem posed by S. Ahlgren and K. Ono [Contemp. Math. 291, 1–10 (2001; Zbl 1009.11059)]. He also obtains analogous results for primes \(\nu > 3 \) when \(\gcd(t, 6\nu) = 1 \).

Reviewer: Mihály Szalay (Budapest)

MSC:

11P81 Elementary theory of partitions
11P83 Partitions; congruences and congruential restrictions
05A17 Combinatorial aspects of partitions of integers
11F33 Congruences for modular and \(p \)-adic modular forms

Keywords:
parity; partition function; arithmetic progression; Subbarao’s conjecture; modular forms

Full Text: DOI