Lambert, Ben

The author shows that for a perpendicular Neumann boundary problem for the graphical mean curvature flow over a convex domain in Minkowski space, a solution exists for all time and it converges to a hyperplane. The use of maximum principle methods asks for the assumption of convexity of the domain. This enables a gradient estimate.

Reviewer: Gabriela Paola Ovando (Rosario)

MSC:
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53C17 Sub-Riemannian geometry
35K59 Quasilinear parabolic equations
53B30 Local differential geometry of Lorentz metrics, indefinite metrics

Keywords:
mean curvature flow; Minkowski space; Neumann boundary condition

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.