Lakatos, Piroska
Salem numbers defined by Coxeter transformation. (English) Zbl 1281.11093
Linear Algebra Appl. 432, No. 1, 144-154 (2010).

A generalised star is a simple connected graph that is not a tree, not a single cycle and has exactly one vertex of degree at least 3. Such a graph is made into an oriented n-vertex graph \(Q \) by giving each edge a unique orientation, but not allowing oriented cycles. Its adjacency matrix \(B \) is then an \(n \times n \) matrix that has a 1 if there is an edge from \(i \) to \(j \), and 0 otherwise. The Coxeter transformation \(c_\mathcal{Q} \) of \(Q \) is then the matrix \(\Phi_\mathcal{Q} = -(E - B)^{-1}(E - B)^T \), where \(E \) is the \(n \times n \) identity matrix. This is an integer matrix, since the ‘no oriented cycles’ condition implies that the vertices of \(Q \) can be labelled so that \(B \) is strictly upper-triangular. The characteristic polynomial of \(Q \) is its Coxeter polynomial. The main result of this paper is that this Coxeter polynomial is the product of a Salem number and certain cyclotomic polynomials. Thus the spectral radii of such polynomials are Salem numbers. The proof is a detailed analysis of the roots of the Chebyshev transform (trace polynomial) of the Coxeter polynomial.

Remark: At the bottom of page 145 ‘\(a_{2n} = 0 \)’ should read ‘\(a_{2n} \neq 0 \)’

Reviewer: Chris Smyth (Edinburgh)

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11C08 Polynomials in number theory
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
20F55 Reflection and Coxeter groups (group-theoretic aspects)
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)

Keywords:
Coxeter polynomial; Salem number; semi-reciprocal polynomials; Chebyshev transform

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.