Conde, J.; Gimbert, J.; González, J.; Miller, M.; Miret, J. M.
On the nonexistence of almost Moore digraphs. (English) Zbl 1284.05113

Summary: Digraphs of maximum out-degree at most \(d > 1 \), diameter at most \(k > 1 \) and order \(N(d, k) = d + \cdots + d^k \) are called almost Moore or \((d, k)\)-digraphs. So far, the problem of their existence has been solved only when \(d = 2, 3 \) or \(k = 2, 3, 4 \). In this paper we derive the nonexistence of \((d, k)\)-digraphs, with \(k > 4 \) and \(d > 3 \), under the assumption of a conjecture related to the factorization of the polynomials \(\Phi_n(1 + x + \cdots + x^k) \), where \(\Phi_n(x) \) denotes the \(n \)th cyclotomic polynomial and \(1 < n \leq N(d, k) \). Moreover, we prove that almost Moore digraphs do not exist for the particular cases when \(k = 5 \) and \(d = 4, 5 \) or 6.

MSC:
05C20 Directed graphs (digraphs), tournaments
05C35 Extremal problems in graph theory

Keywords:
\((d, k)\)-digraphs

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.