Wang, Yiqiao; Shu, Qiaojun; Wang, Weifan
The acyclic edge coloring of planar graphs without a 3-cycle adjacent to a 4-cycle. (English)

Summary: An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index $a'(G)$ of G is the smallest integer k such that G has an acyclic edge coloring using k colors. J. Fiamčík [Math. Slovaca 28, 139–145 (1978; Zbl 0388.05015)] and later N. Alon [J. Graph Theory 37, No. 3, 157–167 (2001; Zbl 0996.05050)] conjectured that $a'(G) \leq \Delta + 2$ for any simple graph G with maximum degree Δ. In this paper, we show that if G is a planar graph without a 3-cycle adjacent to a 4-cycle, then $a'(G) \leq \Delta + 2$, i.e., this conjecture holds.

MSC:
05C15 Coloring of graphs and hypergraphs
05C10 Planar graphs; geometric and topological aspects of graph theory
05C07 Vertex degrees
05C35 Extremal problems in graph theory

Keywords:
acyclic edge coloring; planar graph; cycle; maximum degree

Full Text: DOI

References:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.