Della Vedova, Alberto; Zuddas, Fabio

Let X be a projective manifold equipped with an ample line bundle A. The existence of a constant scalar curvature Kähler metric ($cscK$) in class $c_1(A)$ is a central problem in Kähler geometry. The famous Yan-Tian-Donaldson conjecture states that (M, A) admits a $cscK$ (in the class of $c_1(A)$) if and only if (M, A) is K-polystable. The difficult part of the conjecture is the “if” part, which is largely open. Note that K-stability is not the only GIT stability notion related to the existence of $cscK$ metrics. Assuming that $H^0(M, T_M) = 0$, S. K. Donaldson [J. Differ. Geom. 59, No. 3, 479–522 (2001; Zbl 1052.32017)] proved that the existence of $cscK$ in $c_1(A)$ implies asymptotic Chow stability. Thanks to the work of T. Mabuchi [Invent. Math. 159, No. 2, 225–243 (2005; Zbl 1118.53047)], the assumption $H^0(M, T_M) = 0$ can be removed by introducing some hypothesis between A and Aut (M). These invariants are called higher Futaki invariants.

The article under review first proves that, like the original Futaki invariant, the higher Futaki invariants have an algebraic-geometric nature. Furthermore, the authors discuss some properties of the asymptotic Chow stability for two types of manifolds. The authors prove that, for a projective bundle $P(E)$ over a curve of genus $g \geq 2$, asymptotic Chow stability is equivalent to slope polystability. In the case of blowups, they give an explicit formula for the Chow weight and higher Futaki invariants in terms of the data on the base manifolds. Combining this with a result of C. Arezzo and F. Pacard [Ann. Math. (2) 170, No. 2, 685–738 (2009; Zbl 1202.53069)], they prove that, if M is the blow up at four points of P^2 (all but one are aligned), then M admits an asymptotically Chow unstable $cscK$ polarization.

Reviewer: Junyan Cao (Seoul)

MSC: 32Q15 Kähler manifolds

Keywords: constant scalar curvature; Kähler geometry; asymptotic Chow stability; higher Futaki invariants

Full Text: DOI arXiv

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.