Summary: We show that the maximal number of equal entries in a totally positive (TP) (resp. totally nonsingular) \(n \times n \) matrix is \(\Theta(n^{4/3}) \) (resp. \(\Theta(n^{3/2}) \)). Relationships with point-line incidences in the plane, Bruhat order of permutations, and TP completability are also presented. We also examine the number and positionings of equal 2-by-2 minors in a 2-by-\(n \) TP matrix, and give a relationship between the location of equal 2-by-2 minors and outerplanar graphs.

MSC:

- 15B48 Positive matrices and their generalizations; cones of matrices
- 15A83 Matrix completion problems
- 05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
- 05A05 Permutations, words, matrices

Keywords:
totally positive matrices; point-line incidences; Bruhat order of permutations; outerplanar graphs; matrix completion

Full Text: DOI arXiv

References:
[12] Naserasr, S., The logarithmic method and the solution to the \$\mathit{TP}_2\$-completion problem, (2010), College of William and Mary, PhD thesis

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.